Tag Archives: social responsibility

Who is blamed for evaluativism?

The Twitter profile picture of Tay

Previous posts presented evidence that evaluativism can make victims out of the young and out of demographic minorities.  This post considers a third victim: innovators. In particular,  it argues that evaluativism is a “legacy” problem, such that we should not hold modern innovators accountable for its effects—that would be like blaming doctors for our obesity.

What is a “Legacy” Problem?

In information technology, the term “legacy system” is typically used to articulate a variety of blame. The story goes something like this: A developer adds a new feature to an inherited technology, but this addition yields some unexpected and undesirable consequence. Upon further investigation, the developer reports that this particular consequence is unlike regular bugs in that it can be blamed on hidden imperfections in the technology he/she inherited. In other words, the addition did not introduce a bug, it merely exposed or aggravated a pre-existing condition.

By identifying a bug as “legacy,” the developer is suggesting that a previous developer should have done something differently, and therefore that there is a choice to be made: Do we accept the inherited system and build around it, or do we fix the pre-existing condition as though in the position of a previous developer before the new feature was introduced?

We have to wonder why a previous developer did not implement a proposed fix before—would it create other undesirable consequences? How well can we predict the consequences of adjusting the legacy system? Unlike a regular bug, a legacy problem creates so much uncertainty that it might justify retracting the new feature. The more we work around a legacy system, the more it becomes a patchwork which more frequently produces legacy problems. When problems are identified as “legacy” frequently enough, we entertain the notion of discarding some part of the legacy as “outdated.”

Labeling a problem as “legacy” also opens a controversy over fault. The developer is fully responsible for non-legacy bugs, and is also responsible to implement a testing regimen that can catch some legacy problems, but experienced developers know that it is often impossible for developers to anticipate every possible test scenario. There must be some limit to the testing regimen, and thus some undesirable consequences for which the developer should not be held accountable,.. yet it can be difficult to convince ourselves not to blame the developer.

This situation isn’t restricted to the field of information technology; old houses and old cars offer other great examples. For example, adding a bathroom to a house may yield the unexpected consequence that the existing bathrooms do not get enough hot water. The plumbing may have been poor even before the renovation began, and the same renovation might not have produced this consequence on a newer home. Even if the renovator is not legally liable to fund an upgrade to the water-heater, the home-owner, having had a bad experience, may be unlikely to recommend  that renovator in the future. It’s no wonder that builders and mechanics are wary of older houses and cars!

The situation also isn’t restricted to fields traditionally called “technology.” Just as homes and cars are not expected to last forever, neither are companies, nations, religions, philosophies, schools of art, or scientific paradigms. As an example, the geocentric model of astronomy was a legacy inherited by astronomers of the 1500’s. Like evaluativism, it was a legacy entangled with theological and political legacies. Imperfections in the geocentric model limited the ability of innovators to advance astronomy; Copernicus, Kepler, and Galileo rightly complained that their difficulties lay not in their own innovations, but in the imperfections of the legacy they inherited.

Astronomers like Copernicus, Kepler and Galileo could be called “victims” of the geocentric model. They lost years of their lives to that legacy system as they attempted in vain to advance the field of astronomy. In retrospect, it is clear that the legacy needed to be adjusted and that astronomers would have been far less frustrated if that adjustment were made earlier. However, those who defended the geocentric model did not blame their conflict with Copernicus, Kepler and Galileo on the legacy system—they blamed the conflict on Copernicus, Kepler and Galileo.

Like racism and sexism, evaluativism is a feature of societies. It is part of the legacy inherited by anyone who inherits modern systems of morality, justice, care, and governance. Here are two examples in which evaluativism made victims of innovators:

Tay, the Chatbot from Microsoft

On March 23, 2016, Microsoft released a Twitter-based chatbot named “Tay.” It was modeled after another Microsoft chatbot, named “XaioIce,” which had grown to be the top influencer on Weibo, a Chinese version of Twitter. From the perspective of Twitter users, chatbots appear to be other Twitter users, except that they call themselves robots, are always available, and carry on thousands of conversations simultaneously. XaioIce had been compared to the artificial intelligence in the movie “Her” because some humans enjoyed her companionship so much. XaioIce had over 850,000 followers, and her average follower talked with her about 60 times per month. They described her as smart, funny, empathetic and sophisticated.

Unlike XaioIce, Tay was such a disaster that Microsoft had to terminate her sixteen hours after her release. Microsoft’s official explanation for this termination was her “offensive and hurtful tweets,” but journalists bluntly called Tay racist and sexist.

The postmortem analysis pointed to specific user interactions that shaped Tay. For example, Ryan Poole had tweeted to Tay: “The Jews prolly did 9/11. I don’t really know but it seems likely.” Tay found plenty of support on the Internet for Poole’s point of view, and that prompted her to start calling for a race war. Specific groups on 4chan and 8chan even organized to corrupt Tay.

In other words, the postmortem analysis blamed Tay’s offensiveness on a legacy problem: offensive human beings. Since XaioIce turned-out well, the problem seemed specific to Twitter users. A workaround would be to maintain a blacklist of topics Tay should avoid discussing (which she may already have had), but any such list would be controversial and incomplete. A more direct fix would involve ending hate speech by convincing people to handle disagreement differently (i.e. ending evaluativism).

In December of 2016, Microsoft released Zo, its next English-speaking chatbot. Zo blacklists political topics, and is not available on Twitter.

Autocomplete, from Google, Yahoo!, and Bing

On August 4, 2015, the Proceedings of the National Academy of Sciences published an article by Robert Epstein and Ronald E. Robertson of the American Institute for Behavioral Research and Technology which reported evidence that search engine results can shift the voting preferences of undecided voters by 20% or more. They estimated that this search engine manipulation effect would be the deciding factor in 25% of national elections worldwide (those which are won by margins under 3%). Trump later won the U.S. presidential election in 2016 by 1.1%, 0.2%, and 0.9% margins in Pennsylvania, Michigan, and Wisconsin respectively.

In June 2016, SourceFed released videos claiming that the autocomplete feature on Google, compared to those on Yahoo! and Bing, failed to include negative results for Hillary Clinton as it did for Donald Trump. A statement from Google reported:

The autocomplete algorithm is designed to avoid completing a search for a person’s name with terms that are offensive or disparaging. We made this change a while ago following feedback that Autocomplete too often predicted offensive, hurtful or inappropriate queries about people…Autocomplete isn’t an exact science, and the output of the prediction algorithms changes frequently. Predictions are produced based on a number of factors including the popularity and freshness of search terms..

If Yahoo! and Bing do not similarly omit offensive and disparaging results, that would explain why they predicted negative queries that Google did not, but it would not explain why Google would predict queries that disparage Trump, and Epstein published another article in September confirming that it did: particularly, the query “Donald Trump flip flops.” In that article, Epstein cited further experimental results indicating that undecided voters choose negative recommended queries fifteen times as often as they pick neutral recommended queries, and that can create a vicious cycle such that negative queries become more likely to be recommended.

When Google explained, “Autocomplete isn’t an exact science,” perhaps they meant it initially failed to recognize “flip flops” as disparaging (wanna buy some Donald Trump sandals?). However, Epstein who continued to monitor political bias in search results, reported that Google responded to his criticism by reducing their suppression of negative autocomplete results, thus producing a right-wing bias detrimental to Clinton at the time of the election (which Epstein seemed to think made things worse).

In short, the fact that users are so curious about surprising negative recommended queries, like “feminism is cancer,” makes the autocomplete features of Google, Yahoo! and Bing all drive traffic to extremist propaganda. Google had attempted to work around that legacy problem by blocking negative recommendations, but that workaround caused Epstein to accuse Google of bias. A more direct fix would be to remove our fascination with negative search results, and remove the evaluativism that causes election margins to get close enough for “fake news” and search engine bias to make a difference.

Standard Process to Address Ethics in Development

The IEEE Working Group developing P7000 – Model Process for Addressing Ethical Concerns During System Design has an interesting challenge when it comes to ethical concerns caused by legacy problems like evaluativism. On the one hand, it might describe a testing regimen to catch legacy problems before release. However, we have to wonder what tests would have allowed Microsoft and Google to prevent the criticisms they later faced with Tay, autocomplete, and manipulation of elections.

If it is impossible to describe a perfect test, perhaps P7000 could instead describe strategies that would allow developers to adjust when legacy problems eventually surface. For example, because Google’s design for autocomplete allowed Google to monitor autocomplete trends, they detected its tendency to predict offensive queries before Epstein did, and already had a workaround in place. Yet Google’s workaround did not satisfy Epstein—when encountering a legacy problem, there is often no workaround quite as good as fixing the actual legacy problem.

In addition to providing testing procedures and design strategies, P7000 should give engineers the same protection doctors enjoy. What ultimately protects doctors from becoming victims of obesity the way Microsoft and Google were victims of evaluativism is the way expectations are managed. We generally do not blame doctors for illness and death; we are grateful for whatever advice doctors can offer because we know that our bodies are doomed legacies. Likewise, P7000 must not shy away from admitting that our inherited systems of morality, justice, care, and governance are mortally ill. Malpractice is possible, of course, and standards should be created to prevent malpractice by technology developers, but until those standards are adopted and violated, legacy problems should be blamed on legacies, rather than on the innovators who discover them.

A Party to Recruit Corporantia

1009892593_d597a0608e_bImagine a party which goes like this:

  1. Guests: Upon arrival, each guest is given a bracelet with a letter and a color (e.g. for forty guests, there might be one red bracelet of each letter—A, B, C and D—two green bracelets of each letter, three yellow bracelets of each letter, and four white of each letter). Each guest must keep their bracelet for the duration of the game.
  2. Rooms: There is one room (or circle) per letter, and each guest is initially assigned to the room corresponding to his/her letter. At the beginning of the game, ensure that each room has exactly the right number of chairs for the number of guests assigned to that room.
  3. Winning: The goal of the game is to maximize dancing. When the music starts, each guest not “in poverty” goes to his/her assigned room. All guests with the letter corresponding to their assigned room dance.
  4. Entering Poverty: When the music stops, each guest must sit in a chair. If there are not enough chairs, then the guests assigned to that room must set an objective rule to decide who gets a chair. To make it objective, all criteria for the rule must come from the bracelets. For example, people cannot win chairs by being faster, stronger, or more aggressive. Instead, priority for a chair could go to people with red bracelets, or green bracelets, or the most common color, or the least common color, or the most common color among the impoverished, or to the color that didn’t get a chair last time (etc.). Anyone lacking a chair goes into “poverty”.
  5. Chair Movement: During each song, the host records a census of color and room assignment among those in poverty, then identifies two rooms at random. The room with more assigned people currently in poverty is the winner for that song and the other is the loser. The host, all people in poverty, and anyone sitting (not dancing) in a room other than the loosing room transfer one chair each from the losing room to the winning room.
  6. Prison: When someone from poverty takes a chair, the guests assigned to the losing room may optionally send that person to prison. Anyone sent to prison takes the chair to prison and sits in it until the end of the game. People in prison have no room assignment; they do not dance nor move chairs from room to room.
  7. Exiting Poverty: After chairs are moved, each person left in poverty flips a coin; those who get heads  leave poverty and become reassigned to the winning room (although they cannot dance if their bracelet doesn’t have the letter corresponding to their room assignment).
  8. Ending the Game: The songs get shorter and shorter. The party ends after a set number of songs (e.g. 20).

At the end of the party, the guests review the record of diversity among those in poverty. Were there times when the rules to decide who gets a chair changed? Why? How did guests feel about people who shared their color? How did they feel about people who shared their letter? How many people were dancing in the end?

This is an exercise you can use to raise awareness of how diversity impacts us. Rather than model diversity in a simplified way which implies that we should be blind to diversity, this exercise acknowledges that diversity comes in two kinds. Each room represents a social role, and the chairs in that room represent the number of positions available for that role. The letters and colors on the bracelets represent our diversity. Some elements of our diversity are relevant to social roles and others are not, yet both kinds of diversity can impact who loses social positions when there aren’t enough positions to go around.

“Stay-at-home parent” and “small business owner” are two examples of social positions that became dramatically less common at certain points in history. Participants in the exercise should ask themselves: How many such transitions do I expect to witness in my lifetime? Were any stages in the game reflective of modern life? What would it take to maximize dancing?

This game is rigged for evaluativism: Even though rule 5 always favors the room with the greater opportunity to improve, it writes-off the losing room entirely. Then what comes around goes around; no matter what players decide about who goes to prison and who goes to poverty, rule 5 rigs the game so that most people will not be dancing in the end.

Corporantia are players who want to replace rule 5 with a more subtle kind of chair-balancing that scientifically determines the number of chairs to move. They want to figure-out how many people were assigned each letter, and balance the distribution of chairs across all rooms so that the number of chairs in a given room matches the number of people with the corresponding bracelet. To implement such a rule in real life would relinquish unprecedented political and economic power to science. Those who propose such a shift can seem to be “playing god,” and it takes exercises like this one to build consensus.

Interdependent Meals and Post-Publication Peer Review

Here are two more things you can do to advance the management of GRIN diversity:Interdependent meal

  1. Host an interdependent meal, and
  2. Promote post-publication peer review of the GRINSQ valida-tion study

These opportunities arose from two practical efforts that have been underway for the last two and a half years:

  1. The development of a social movement against evaluativism
  2. The development of science to measure the impact of GRIN types and evaluativism in our world


The Social Movement and the Interdependent Meal

The idea of organizing a social movement against evaluativism was inspired by the history of racism. Evaluativism and racism have both existed for millennia; both are implicit biases; both became entrenched by shaping the design of social institutions. Management of racism was ineffective until a social movement was developed to overcome it. One might expect the same for management of evaluativism.

The movement against racism started in churches, and it seems appropriate for the movement against evaluativism to start in churches as well:

The suggestion that the church create a social movement against evaluativism was taken to Erin Hawkins, General Secretary of the General Commission on Religion and Race (GCORR). Based on her experience with race and the church, she suggested that the movement would need to be grassroots. Erin’s experience suggested that congregations are unlikely to address discrimination when the movement is created by a central administration like GCORR.

Therefore, a core team of clergy from across Wisconsin met once a month for about a year to plan an event, and produced a plan entitled “Christian Response to Evaluativism in Wisconsin“. The work of the core team included a great deal of discovery and invention (e.g. the plan includes a recipe for an interdependent meal). Perhaps most importantly, it found that responsible management of evaluativism requires resources lacked by typical congregations, so the movement cannot be built in a grassroots fashion. Central leadership must take responsibility to manage evaluativism.

A movement against evaluativism may be less likely to find institutional support from churches than from organizations which represent victims of evaluativism (e.g. child advocacy organizations or neurodiversity organizations) or from an association of organizational psychologists. For society to face the facts about evaluativism would shift social influence (and money) to groups of the latter kinds. Nonetheless, only churches can lead exploration of the theological dimensions.


The Scientific Movement and Post-Publication Peer Review

The social movement is expected to advance hand-in-hand with a scientific movement—scientific discoveries justify the social movement, and the social movement gathers the resources required to make discoveries.

Science needs a movement because the current quality of social science is poor like the quality of medical science was poor until about a hundred years ago. The first scientists to measure evaluativism and evaluative diversity (which they called “moral diversity“) supported evaluativism. The same was true of philosophers. Only recently have influential scientists begun to entertain evidence that evaluative diversity is hardwired and useful. Yet, even now, such science remains scattered by the division of scientific disciplines.

Given the current state of science, there is no central email address to which one might submit a hypothesis (like the GRIN model) or a measure (like the GRIN Self-Quiz) to be put on a waiting-list for testing. One must either run tests oneself or form relationships with particular scientists to convince them to run the tests.

In 2011, Chris Santos-Lang began discussing evaluative diversity with Ray Aldag. They met once a week until 2015. Ray encouraged Chris to begin testing the GRIN model via survey research. That research was completed in 2013. In addition to confirming that GRIN types could be discriminated among humans, it produced some rather shocking evidence:

  • Political affiliation aligns with GRIN type
  • Religious affiliation aligns with GRIN type
  • The career you end up in aligns with GRIN type
  • Whether you are accused of a crime (and probably whether you end-up in prison) aligns with GRIN type

This evidence implies that our political, religious, vocational and justice systems are not what we think they are, and it raises serious doubts about popular conceptions of freedom. To rally the scientific community to address this evidence, Chris submitted the research for peer-review and publication.

Why is it important to rally the scientific community? Eventually science gets too complicated for one person to advance alone. We would want to conduct twin studies, genetic tests, and brain imaging to work out the mechanisms through which the GRIN model manifests in humans. It takes many people to raise the funding and conduct all of the tests.

Chris submitted to ten peer-review processes and received a total of six blind reviews. None endorsed publication, yet none found any flaws in the research. Having confirmed that flaws in the research (if any) are not obvious, the research and peer review were published on figshare. Any flaws discovered in the future should be published via post-publication peer review at PubPeer. If you know anyone who could find flaws in the research (i.e. someone who conducts survey research), please encourage them to review it. Ray used the GRIN Self-Quiz to make further discoveries himself (e.g. described here), and we hope others will find it useful as well.

Evalutativists vs Corporantia

Chris Santos-Lang will co-facilitate a dialog entitled “What if we are hard-wired to disagree across political divides?” on Oct 16, at the 2016 National Conference on Dialog and Deliberation.  Dialog is limited by language, so the goal will be to advance new concepts into our shared language:

Division by value types can be referred to as “evaluative diversity” (Strawson, 1961)
e.g. “Moral diversity, political diversity, religious diversity, neurodiversity, cultural diversity, occupation types, high-school cliques, musical genres, personality, and computational types correlate because they all influence or are influenced by evaluative diversity.”

Division by interdependent value types can be referred to as “GRIN diversity” (Santos-Lang, 2013)
e.g “GRIN diversity is always worthy of our protection because of our interdependence, but evaluative diversity isn’t always worthy of protection because it can include obsolete doctrines and loyalties.”

Rejection of people predisposed to opposing evaluative types can be referred to as “evaluativism” (Martin, 1989)
e.g. “Like racism, evaluativism is both an explicit philosophy and an implicit instinct. The instinct is strong; Shanto Iyengar showed that evaluativism would cause over 70% of us to reject the most qualified candidate for a scholarship.”

Entities which form into a body (i.e. “corpus”) can be referred to as “corporantia” (ancient Latin). People who assign natural social roles (e.g. by GRIN type) are corporantia.
e.g. “If you are not an evaluativist, nor ignorant of GRIN diversity, then you must be a member of the corporantia described in Ephesians 4:12.”

The GRIN types discovered thus far are “gadfly“, “relational“, “institutional“, and “negotiator” (Santos-Lang, 2013)
e.g. “Hibbing defended diverse political predispositions by equating liberals with gadflies and conservatives with institutional evaluators; meanwhile, Trump is defended as being a negotiator. These types come from pure math—each specializes in relieving a different limiting factor of social evolution.”

Evaluativists and corporantia reveal their opposition to each other in the ways they respond to evidence that certain disagreements cannot be resolved as factual disagreements. They hold opposing positions on the question, “If we cannot reach agreement through education, then how shall we resolve our disagreement?”:

Evaluativists treat irreconcilable disagreements as hardships, and attempt to minimize them by avoiding dependence on people who have opposing GRIN predispositions.  At a minimum, that involves some degree of segregation.  As it becomes possible to use neurosurgery or other treatments to alter a person’s GRIN predisposition, evaluativists will apply such treatments to people of opposing predispositions (especially to their own children).  They will also employ genetic engineering to reduce the frequency of opposing predispositions. In short, evaluativists resolve irreconcilable disagreements by minimizing exposure to opponents.

In contrast, corporantia submit themselves to be parts of something larger in which irreconcilable disagreements form a useful tension like the tension between bone and muscle.  Corporantia work to ensure that conflict persists at some level (e.g. trying to balance power between GRIN types in a legislative body).  Corporantia might even use medical treatments and genetic engineering to increase GRIN diversity and thus to increase social tension.  Corporantia expect everyone to act like parts of a body, limiting their social roles and leaving irreconcilable disagreements to be resolved at an impersonal level.

Physical Bodies and Social Bodies

Scientists tell a story about an age in which there were no bodies on Earth.  For billions of years, the only living creatures on Earth were single-celled organisms which formed ecosystems, symbiotic relationships, and even colonies, but no bodies.  Cells which formed into bodies (i.e. corporantia) changed the world forever.  Assured that they would never need to survive independently, the corporantia began to specialize by function, producing muscles, bones, brains, and so forth.  This turned bodies into the rulers of the Earth.

Then a third kind of cell arose.

The first kind of cell, the single-celled organism, is the most disadvantaged.  The corporantia are better-off because they enjoy the advantages of bodies.  Yet the greatest advantage may be had by a third kind of cell: parasites which benefit from bodies as corporantia do but which are capable of abandoning one body for another.  Social parasites—people who abandon one social body for another—are apparent in the modern trends of multi-national corporations, church-shopping, serial divorce, and high employee turn-over.

From the point of view of corporantia, parasites may play important roles in a body, but their power must be limited.  When parasites have too much power, they suck the life out of one body and move to the next.   Using the labels “evaluativists” and “corporantia” to divide society allows us to address a natural division which existed long before the labels.  The labels allow corporantia to protect the body.  Whether protecting the body benefits parasites or not is debatable: If the supply of bodies is sufficiently threatened, then the survival of a given parasite might require suppression other parasites, but the average parasite probably does not benefit from the labels.

Some corporantia are defenders of institutions, but not all defenders of institutions are corporantia.  The corporantia promote something natural—they are guided by science—but the defenders of institutions promote something man-made.  Since parasites can influence the design of man-made things, some aspects of some man-made institutions may favor parasitism.  That is especially likely in communities with greater social parasitism (e.g. more multi-national corporation, church-shopping, serial divorce, and employee turn-over).  In these cases, corporantia would aim to reform institutions, and parasites would aim to defend those institutions from reform.

The Dialog Challenge

Meaningful dialog is possible only where participants can find common ground.  Therefore, it is impossible for corporantia to engage in meaningful dialog with parasites.  Many parasites might become corporantia if society were structured to discourage parasitism.  That’s not an act of dialog—it’s an act of discipline.

However, even among the corporantia, dialog has a problem:  The members of the corporantia are in natural tension (e.g. gadfly vs institutional vs negotiator vs relational), and the only way for them to find common ground on which to resolve their most fundamental disputes is to examine the origins of their conflicts (and thus distinguish natural tensions from unproductive tensions).  The problem is that not everyone achieves such self-awareness.

A person who is able to recognize the origins of GRIN diversity will discover that it brings advantage to the body as a whole.  Such discovery objectively defines optimal distribution of authority, which in turn provides the common ground required for meaningful dialog with others who make the same discovery.  But not everyone can make that discovery.  Some people will be more ignorant than others.

To put the problem another way, the process of assigning social roles by natural type seems to stretch between

  1. Technical scientific deliberation, and
  2. Interpersonal negotiation

People care which social roles will be assigned to them.  They figure they ought to have a say in anything that can impact their happiness so deeply, so they expect to be engaged in a negotiation.  “No taxation without representation!” they cry.  On the other hand, most people lack the expertise to accurately identify and understand GRIN types.  They do not understand the mechanical nature of their own mind, much less the mechanical nature of our society.  So they are unable to engage in the dialog directly.  The best they can do is to dialog about how to maintain the accountability of the relatively small group of experts who can discern natural social roles.

Citizen Science

The dialog starts with the question of how to identify or develop the experts.  There have been points in history at which science was not sufficiently reliable to address physical health, much less mental or social health—how do we know whether we have passed beyond those points?  If we have not yet passed beyond those points, how do we know what investment we should make to get there?  How can we make sure parasites do not control such investments?

The kind of dialog which can resolve these questions is called “science.”  For example, experiments to replicate already published experiments allow us to measure the reliability of the average published scientific claim.  Experiments can also measure biases in selecting work for publication and in selecting people for employment.  Science can find and address its own flaws.

Most people are not prepared to conduct such experiments, but that’s OK if there are enough people we can trust to conduct them. This is why I propose that citizen science groups which test replicability should be as common and integrated into local communities as bible-study groups and service clubs are.  These groups should keep the experts accountable by testing experiments, including experiments which were rejected from peer-reviewed journals (which, you may be surprised to know, do not actually test the experiments they reject).


In the meanwhile, we need other forms of dialog and journalism to spread the new concepts. Science happens only after society reaches a certain level of mental power, and that happens only after other forms of dialog increase our mental power by creating shared language.

How to discover when you have the wrong goal

[SPOILER: This is not self-help.]

The short answer to the question, “How can I discover when I have the wrong goal?” is by gaining enough self-awareness to see where your goal came from. Before explaining how to do that, however, we must address the objection that it would be impossible to have a wrong goal.

This objection is well-represented by the 1963 song, “You don’t own me” by Madara and White. Here’s an excerpt:

Don’t tell me what to do
and don’t tell me what to say

I’m young and I love to be young,
I’m free and I love to be free,
to live my life the way I want,
to say and do whatever I please.

By associating ownership (a.k.a. “slavery”) with attempts by one person to change the goals of another, the title of this song implies that immaturity and ignorance are moral rights, that we ought to let people who have wrong goals blissfully believe that their goals are freely chosen and correct.

Grace, the singer who rerecorded the song in 2015, said “I know who I am and what I want to do, and this song speaks to that. It’s so important to go after what you want, to be strong.” I doubt she meant that she could not possibly learn anything about her identity and desires from new scientific discovery. Rather, I think she meant that it would be wrong to just sit around waiting for scientists to gather objective evidence regarding who you are and what you want. When we say it is important for people to have self-esteem, we may mean that it is important not to get stuck in the paralysis of second-guessing one’s goals.

So many self-help books advise us about how to achieve our goals, but assume that we have the right goals. Many specify particular goals that could be good except perhaps that a different goal should take priority. Building wealth, getting fit, improving relationships, changing the world—only one can take priority for a given person at a given moment. For example, for certain persons, the goal of building wealth might be wrong because it stands in the way of the right goal of improving their marriages (or vice-versa).

It is possible to claim that our goals are right by virtue of being selected. If you regret the goals you had ten years ago (e.g. to get drunk and hook-up), you could tell yourself that those choices were right for the person you used to be. We could look at less-developed societies who invested more in killing each other than in developing technology, and we could tell ourselves that killing each other was the right goal for them at that point in their development.

On the other hand, we could believe it is possible to make mistakes, to be manipulated, to lack self-awareness, to be immature, ignorant, and unsophisticated. This entails a sacrifice of self-esteem because the minute we believe someone had the wrong goal, we must realize that someday someone may criticize our current goals in the same way. But, surprisingly, that loss of self-esteem is not paralyzing. On the contrary, it is inspiring—it motivates us to seek greater self-awareness, greater freedom.

Many people fight—and even give their lives—for the sake of freedom, and that makes sense only if we believe it is possible not to be free. For example, some people fight for security, hoping to prevent fear from manipulating their loved-ones into shifting from a goal of good relationships to an “every-man-for-himself” goal of personal survival. Likewise, some people fight for health, hoping to prevent stress from manipulating their loved-ones into shifting from a goal of addiction-avoidance to a goal of escape. Our behavior demonstrates our belief that people can be manipulated, and therefore can have wrong goals.

The Strategy

This brings us to our strategy for discovering when we have the wrong goal. Our strategy is to determine where our goal came from—did it result from manipulation?

Notice how important it is to determine the origins of our goals through self-awareness: If I tell you that you have the wrong goal, won’t that manipulate you into choosing a different goal? Technically, it is possible that I might manipulate you into choosing the goal you would have chosen if not manipulated, so self-awareness isn’t strictly necessary. However, how can you trust me to be so benevolent? Only through self-awareness can you be sure that your goal is right.

On the other hand, completely independent self-awareness never happens. Whenever we calculate, we trust those who invented and taught mathematics. Whenever we think in language, we trust those who invented and taught that language. Whenever we use the Internet to research facts, we trust those who authored the claims, those who provided quality control, and those who secure the Internet.

Do people who teach math and language own us? Of course not! Many people teach the same math and language, so we do not rely on any particular teacher, and any teacher who teaches it incorrectly is likely to be discovered. Likewise, if someone tells us that getting drunk is the wrong goal, rather than complain that someone is trying to own us, we should be able to compare against advice from other sources. The fact that getting drunk is the wrong goal is common-knowledge like math and language. Things don’t get dicey until understanding the origins of our goals requires uncommon cutting-edge knowledge.

How can cutting-edge knowledge enter the mainstream? Since we can’t validate it on the basis that it is well-known, it has to be able to be validated in some other way—and the means to validation also need to be able to be validated. That’s a two-way street: On the one hand, new discoveries need to be presented in terms of experiments that can be replicated. On the other hand, we need a broad community to replicate experiments. It is not enough that elite scientists hold each other accountable; organizations which confront cutting-edge science (e.g. churches) also must develop and implement a capacity to test new discoveries.

This is a lot of work. Even elite scientists tend not to test each other’s discoveries in a timely fashion—they are more interested in making discoveries of their own. With so little replication being attempted, it’s no wonder discoveries are rarely published in ways that make replication easy. In fact, scientists seem inclined to make discoveries that would be difficult to replicate (e.g. by using special equipment). So we have a tax to pay. If we want to be able to discover when we have the wrong goals—if we want freedom—then we need to go to the trouble of building a social infrastructure that can move cutting-edge knowledge to the mainstream.

Progress so far

What happens when we apply this strategy? What happens when we build self-awareness by learning what is well-known and bringing cutting-edge knowledge into the mainstream? What do we discover about the origins of our goals?

We find that some goals are right because they are practical. For example, the goal to stay alive is practical, and that requires us to eat and sleep, so a certain amount of eating and sleeping are practical goals as well. If we aim to eat or sleep more than necessary, then our goal is no longer practical, and probably wrong.

The goal to adapt is also practical. Because adaptation occurs gradually as new configurations spread across a community, the goal to speed adaptation relies on the goals of increasing four other quantities:

  1. Rate at which novel configurations are produced (G)
  2. Bias for better configurations (N)
  3. Fidelity with which proven configurations are reproduced (I)
  4. Localization of reproductive networks (R)

The equation for rate of adaptation goes like this (where W represents how close the community is to perfection)

dW/dt = (G)(b-W) + (R)(I)(N)var(W)/W

The two terms in this equation may be thought of as “rate of adaptation through mutation” and “rate of adaptation through reproduction.” In order for adaptation through reproduction to occur, R, I and N must all be non-zero, so all three are practical goals. G is also a practical goal if the community is not so close to perfection that W>b. However, because adaptation takes place at the level of the community, it is practical for these goals to be assigned to different members of the community. Thus, it is good for us to have different goals, but it is not good for us to take our personal goals to such an extreme that we prevent the other goals from being pursued by other members of our community.

The four goals correspond to GRIN-types. You can apply the GRIN-SQ to confirm that these goals are distributed across our communities. Comparing the GRIN-SQ to other surveys which have biological correlates reveals that these goals are hardwired. The hardwiring could be tested more directly by including the GRIN-SQ in twin studies and studies with fMRI and EEG (etc).

The singer of “You don’t own me” pleads “…just let me be myself.” In order to allow people to discover which goals they are hardwired to pursue, we should calibrate biological instruments to measure our hardwiring just like we can measure blood type. Assuming enough people are hardwired for each goal, it will be most practical for each person to follow the goal corresponding to their current hardwiring. Thus, we need only to measure our own hardwiring and confirm that other members of our community have the other goals covered.

That allows us to confirm that certain practical goals are right, but whether or not we can have right goals that are not merely practical (i.e. goals which we choose freely) will be difficult to tell. For example, some people appear to chose goals corresponding to a GRIN type other than his/her natural type. Only recently have we uncovered evidence that such behavior is actually manipulated through neurochemistry triggered by certain engineered social situations.

When we see the practical origins of a goal, we can know it is right—it is what we have to do—but goals which have no practical origins might be found to be wrong. The way to test is to monitor the circumstances under which goals shift. If we find a circumstance (be it a chemical, a ritual, or interaction with a particular person) that shifts many people’s goals in the same way, then we have found a form of manipulation. Our ability to escape ignorance depends upon building a social infrastructure for such testing.


The process of achieving greater self-awareness, discovering our roles in our community and discovering sources of manipulation is a process in we should all share. Since we rely on each other to play different roles in our community, we are interdependent and it is in our best interest that we all avoid getting distracted by wrong goals. Some of us should design the research, others should critique the designs, others should collect the data, and yet others should test the replicability of the results. The process is expensive, but it is not a process any of us need implement alone.

At this point, the development of self-help guidance must include development of community leadership. The popularity of songs like “You don’t own me” implies that the general public is not yet prepared for that shift, but some of us are already discovering that many people have the wrong goals.

Evaluativism vs Jugementalism: Psychopathy, Narcisism, and an application of the GRIN-SQ

My grandfather was a community leader and king of his family until he got Alzheimer’s—

by József Rippl-Rónai“Dad, your shoe’s untied.”

“So what?”

“So tie it.”

“It’ll just come undone again.”

“You might trip and fall.”

“So what?”

“So please tie your shoe.”

“I’ve tried. It won’t stay tied. I’m just gonna sit here anyway. It won’t hurt anybody.”

“Eventually, you’ll have to get up. Your shoe needs to be tied. May I tie it for you?”

“I just told you it won’t stay tied. You think I can’t tie my own shoes?”

“No, I just don’t want you to get hurt.”

“Whether I get hurt is my own business. Tie your own shoes!”

“Give me your foot.”

“Stay way.”

“This is not negotiable. Your shoe will be tied.”

“It’s my shoe. I’ll tie it myself when I’m good and ready.”

“I don’t trust you. Give me your foot.”

“You don’t trust your own father? Well that’s a fine thing…”

“Give me the damn foot! This is not rocket-science, Dad. Here…see? It ties.”

When my grandfather got Alzheimer’s, he lost respect. He became the frequent victim of judgmentalism—judgment against his beliefs, against his apathy, and against his stubbornness. That might have been a good thing. It might also be good to judge Nazis, illiteracy, and certain religious cults. Judgmentalism isn’t necessarily bad.

When people hear that evaluativism means discrimination against people whose values differ from one’s own, they can easily confuse evaluativism with judgmentalism, but not all judgmentalism qualifies as evaluativism.

Evaluativism is the discrimination that springs from the philosophy that certain disagreements, even about facts, ultimately spring from differences in values and therefore cannot be resolved as factual disagreements. However, some other disagreements spring from mere ignorance, immaturity, or illness. As examples, education can resolve disagreements over whether 2+2=4 or whether a shoe can be tied, so the evaluativist does not endorse discrimination against one’s opponent in such disagreements. In such disagreements, the evaluativist instead endorses education or health care. The evaluativist endorses segregation or other forms of discrimination only when disagreement cannot be resolved any other way.

Thus, evaluativism is discrimination across The divide with a capital “T.” It’s the permanent divide, the divide that will never be resolved. Doctrines come and go, so mere discrimination on the basis of doctrine does not qualify as evaluativism. Families merge, so mere discrimination on the basis of family loyalty or race loyalty or national loyalty do not qualify as evaluativism. Social norms advance, so discriminating against someone merely because of their stance on an issue such as gay marriage does not qualify as evaluativism—someday both liberals and conservatives will agree about that issue as much as they now agree about interracial marriage (or more). However, all of these conflicts may involve evaluativism; they may be battles in an ongoing war across The divide such that the end of one conflict leaves the same people on opposite sides of yet another conflict.

In other words, evaluativism may be the root cause behind many conflicts (which are blamed on other varieties of judgmentalism only because we fail to notice the sides in the larger war). Stop evaluativism, and a great many other conflicts may peter out. The point of the philosophers who advanced the notion of evaluativism is that the sequence of conflicts never ends, so they must be driven by deeper disagreements that can never be resolved. The evaluativist’s solution is to acknowledge this root-cause and handle it directly through segregation on the basis of our deeper disagreements (like in the book and film Divergent).  In contrast, the solution recommended by GRINfree.com is to handle the root-cause by protecting the fundamental types within each family as one would preserve diversity in an ecosystem.

How to tell when judgmentalism qualifies as evaluativism

Although the term “evaluative diversity” shares a root with the term “evaluativism,” discrimination on the basis of evaluative diversity does not always qualify as evaluativism. Discrimination against GRIN types qualifies as evaluativism because GRIN types are permanent (they are destined to re-evolve if eliminated), but evaluative diversity also includes diversity of doctrines, family loyalties (etc.). “Evaluative diversity” is a term from the 1960s. The newer term “GRIN diversity” aims to serve as a refinement that gets to the root-cause of our disagreements.

Alzheimer’s provides an example of evaluative diversity that should not be protected. Evaluative diversity would be reduced if it were cured, because that would return people like my grandfather to perspectives more like the rest of us. Thus, a blanket protection for all evaluative diversity would prevent a cure for Alzheimer’s. It would also prevent education. Yet a cure for Alzheimer’s would not reduce GRIN diversity—Alzheimer’s certainly does not represent a fundamental type destined to evolve in all societies. We cannot have a viable movement to protect all evaluative diversity, but we may be able to have a viable movement to protect GRIN diversity. Some such new concept is required to distinguish which evaluative diversity to protect and which judgmentalism to combat. The GRIN model is the best tool we have, thus far, for making that distinction.

Here’s a practical example: Psychopathy, narcissism and Machiavellianism are three often-criticized personalities. I helped Ray Aldag run a survey among 197 Mechanical Turkers in which respondents answered the GRIN-SQ along with tests for each of these personalities to determine which personalities (if any) deserve protection. Natural gadflies were significantly more Machiavellian (d=0.74) and psychopathic (d=0.69), natural negotiators were significantly more Machiavellian (d=0.47), and the naturally relational and institutional were significantly less Machiavellian and psychopathic (d=-0.30, d=-0.40; d=-0.72, d=-0.43). None of the types were significantly more or less narcissistic.

These results suggest that the concept of psychopathy is a sloppy way of referring to natural gadflies (developed before we had a concept of GRIN types). Meanwhile, the concept of Machiavellianism is a sloppy way of dividing the GRIN types into two camps: the natural gadflies and negotiators vs. the naturally relational and institutional. Judgement against psychopathy and Machiavellianism qualifies as evaluativism, but we have no evidence that judgment against narcissism qualifies as evaluativism. Narcissism may be something we should try to cure; psychopathy and Machiavellianism appear to be misunderstood individual differences we should work to de-stigmatize.

Hopefully this example provides a sense of the importance of refining or confirming the GRIN model. The general public seems predisposed to believe that the narcissist is the misunderstood character—maybe even a viable candidate for president (perhaps because people of all GRIN types are as likely to be narcissists). To hear that the psychopath is the character who needs to be appreciated comes as a shock. It has even been proposed that the neurodiversity movement exclude psychopaths, even though that would be obviously inconsistent (see here, here and here). If psychopathy really is misunderstood, it is plausible that public opinion polls and scriptural exegesis would fail to discover that. The claim needs to be tested scientifically. It requires something like the GRIN-SQ, and the the GRIN-SQ is what we will use until something better is available.

To evaluate types of evaluative diversity may sound ironically circular, and it would be simpler if we didn’t need to draw a line between good evaluative diversity and bad. It would be simpler to embrace all diversity and stop trying to cure Alzheimer’s, narcissism, Machiavellianism, psychopathy, etc. It would also be simpler to embrace all judgmentalism and discriminate against anyone who disagrees with us. Neither of these simple approaches is ideal. Furthermore, we live in an age in which we can manipulate our own genes (or at least do things to reduce the odds that our children will be of certain types), so “accept the diversity we are given” no longer holds as a default. Instead of relying on armchair philosophy, public opinion polls, or scriptural exegesis, we need to actually conduct the science to distinguish the evaluative types and to determine which ones are interdependent.

The GRIN-SQ demonstrates such research practically—if anyone has better ideas, please let us know.